		This is the html version of the file http://www.ini.cmu.edu/2002/ITC/INI-SIPphone/SipPhoneThesisReport.pdf.
 G o o g l e automatically generates html versions of documents as we crawl the web.
To link to or bookmark this page, use the following url: http://www.google.com/search?q=cache:TO_JoAlEgggC:www.ini.cmu.edu/2002/ITC/INI-SIPphone/SipPhoneThesisReport.pdf+&hl=en&ie=UTF-8

Google is not affiliated with the authors of this page nor responsible for its content.

	[bookmark: 1]Page 1

Carnegie Mellon University

Information Networking Institute

THESIS

S

UBMITTED

I

N

P

ARTIAL

F

ULFILLMENT

O

F

T

HE

R

EQUIREMENTS

F

OR

T

HE

D

EGREE

O

F

Master of Science in Information Networking

"Telephony on a PDA: the INI SipPhone"

P

RESENTED

B

Y

Athanasios P Kosmidis

Accepted by the Information Networking Institute

Thesis Advisor:

Date

: __________

(Prof. Marvin Sirbu)

Reader: _______________________________________

Date:

(Prof. Ragunathan Rajkumar)

MSIN Academic Advisor: _________________________

Date:

(Prof. Richard Stern)

	[bookmark: 2]Page 2

	[bookmark: 3]Page 3

Carnegie Mellon University

Information Networking Institute

TELEPHONY ON A PDA:

THE INI SIPPHONE

A Thesis Submitted to the

Information Networking Institute

In Partial Fulfillment of the Requirements

for the degree of

M

ASTER

O

F

S

CIENCE

in

I

NFORMATION

N

ETWORKING

By

Athanasios P Kosmidis

Pittsburgh, Pennsylvania

May 2002

	[bookmark: 4]Page 4

 Copyright © 2002, Athanasios P. Kosmidis, All rights reserved

	[bookmark: 5]Page 5

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

i

Acknowledgements

This thesis was made possible due to the efforts of many individuals beyond its

author.

First, I would like to acknowledge not only the help, support, feedback and

guidance provided by my advisor, Professor Marvin Sirbu, but also his invaluable

contribution in setting up most of the environment necessary for using the

resulting system.

My reader, Professor Ragunathan Rajkumar, set aside much of his limited time in

order to discuss the technology used in this thesis, and provide feedback on the

work done and the accompanying documents.

Furthermore, I would like to thank Sue Jones, Lisa Currin and Tracey Bragg for

their support within the Information Networking Institute; Joe Kern, Jasen Lentz

and Laura Bowser for their invaluable help for setting up the required systems;

the developers of the Wavelink system for their assistance; dynamicsoft Inc., for

donating to the INI the SIP Proxy and Registrar Servers needed to support this

project; and INI students for making life in the computer clusters more bearable.

Finally, I would dedicate this thesis to my family, my friends, and AEK and

Original 21, who have supported me in their own ways, but they deserve much

more.

	[bookmark: 6]Page 6

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

ii

Table of Contents

 List of Tables..iii

List of Figures...iv

Abstract...v

1. Introduction ... 1

2. Requirements Analysis ... 2

2.1

Functional Requirements ... 2

2.2

Other Requirements... 3

2.3

Selection of technology.. 4

3. Underlying Technology Overview.. 9

3.1

Session Initiation Protocol (SIP) and Session Description Protocol

(SDP) ... 9

3.2

Real-time Transport Protocol (RTP)... 16

3.3

Digest Authentication ... 18

4. System Architecture .. 21

4.1

Higher-level Design.. 21

4.2

User Agent Layer ... 22

4.3

Authentication Sub-Layer... 22

4.4

Parsing Layer... 22

4.5

Transport Layer.. 23

4.6

Application Manager Layer .. 23

4.7

Graphical User Interface Layer .. 24

4.8

An example of component interaction.. 24

5. Design and Implementation .. 28

5.1

Session Initiation Protocol (SIP) stack ... 28

5.2

Authentication sub-layer .. 34

5.3

Graphical User Interface .. 37

5.4

Media Transmission (RTP) .. 40

6. Porting to the PDA .. 43

6.1

Cross-Compilation ... 43

6.2

Issues with porting to the Zaurus ... 44

7. Project Postmortem... 47

8. Future work ... 50

9. Conclusions .. 52

References... 54

Bibliography ... 56

Appendix I User's Guide.. 57

Appendix II Main Classes.. 61

Appendix III Maintenance and how-to for future work 71

Appendix IV Zaurus specifications .. 73

Appendix V Related Work ... 74

Appendix VI General Public License ... 76

	[bookmark: 7]Page 7

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

iii

List of Tables

Table 1 Linux-based Personal Digital Assistants .. 5

Table 2 Comparison between SIP and H.323 ... 6

Table 3 SIP functionality in the Wavelink system .. 7

	[bookmark: 8]Page 8

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

iv

List of Figures

 Figure 1 - Direct SIP call..13

Figure 2 - Call through SIP proxy ... 14

Figure 3 - System Architecture diagram... 21

Figure 4 - Component interaction example .. 25

Figure 5 - Association between main User Agent data structures...................... 30

Figure 6 - REGISTER flowchart ... 31

Figure 7 - Incoming INVITE flowchart... 31

Figure 8 - Audio transmission from the Zaurus .. 45

	[bookmark: 9]Page 9

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

v

Abstract

The world is becoming increasingly IP-centric, with a large number of devices

getting networked every day. At the same time, individuals are starting to favor

smaller and lighter devices over their desktops and laptops. As their modalities

and patterns of use get shaped, there is a trend of adding PDA-type tools (like to-

do lists) to cellular phones, thus striving towards a single device one can carry

around and still be both productive and reachable.

This thesis follows a different path, since the increased connectivity of PDAs

creates a new challenge: turning one into a phone. More specifically, the system

built uses the Session Initiation Protocol for establishing the sessions (as Third

Generation cellular phones will) and the Real-time Transport Protocol for

transporting voice packets over an 802.11b network like the one on CMU's

campus. Furthermore, through the authenticated use of a SIP-to-PSTN gateway,

it is also able to make and accept phone calls to and from the telephone network.

The system, released under a General Public License, was built for Sharp's

Zaurus PDA, but can be run on a Linux desktop or laptop as well.

	[bookmark: 10]Page 10

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

1

1. Introduction

The convergence of telecommunications and computing has led to a flourishing

period of new products, services and ideas that have broken the barriers of

functionality a computer or telephone provide alone.

At the same time, the continuous shift to smaller devices and the increasing

choices for enhancing their connectivity creates the possibility of providing

communication services.

Using technologies like the Session Initiation Protocol (SIP) and the Real-time

Transport Protocol (RTP), the work done and presented in this document aims to

create software that allows communication in the form of Voice over IP using a

Personal Digital Assistant (PDA).

	[bookmark: 11]Page 11

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

2

2. Requirements Analysis

The purpose of this chapter is to go through the initial requirements for the

product. Given those, the selected tools, protocols and devices will be briefly

described.

2.1 Functional Requirements

Voice communication has been an integral part of everyday life for so long that a

certain pattern of use has emerged. On the other hand, using computers

introduces different modalities.

The main requirement is for the application to provide the functionality of a

"normal phone". This entails primarily the setup and termination of each call, both

when the user is called and when she is the caller. Additionally, it should support

full-duplex voice communication between the two parties, as in a normal

telephone conversation.

The call setup and termination (a part of call signaling) should incorporate

authentication in order to avoid the use of the application by someone else other

than the owner of the device it runs on. Furthermore, the phone application

should be able to access the device's address book, and vice versa, providing

the feeling of single source of contacts.

The application should be implemented in a way that the user of a PDA with a

wireless connection can take advantage of these features without being

unreasonably restricted by the limits of the device or connectivity. This includes

not only lightweight protocols and efficient algorithms, but also calls for an

	[bookmark: 12]Page 12

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

3

intuitive and non-obstructing user interface, providing access to required

functionality depending on the state of the application (talking, dialing etc).

Finally, although the application will be designed to run on a handheld computer,

there should be nothing preventing its use with equal ease on a desktop or laptop

machine.

2.2 Other Requirements

While the functional requirements constitute a very important part of the user's

interaction with the target application, some others go beyond the functionality

apparent to the end user.

Any telecommunications-related application calls for robust software.

Furthermore, the software should behave in a "forgiving" way: it should expect

that the individuals using it will make small mistakes, and the machines

interacting with it will not necessarily follow the protocols exactly, as they

unfortunately do quite often. It should, in that case, point out the user's mistake

or continue the interaction as long as the valid input is adequate to do so.

The user should not be exposed to the technical details of the underlying

protocols and exchange of messages between the computers involved in a call.

By the same token, these interactions should be such that the resources are not

consumed unreasonably because they may be limited (e.g. when calling from a

PDA over a wireless link); in particular, the network traffic should be minimal.

Finally, the instructions, options, limitations as well as the code should be well

documented, serving both the purposes of a seamless user experience as well

as the ease of modifications or enhancements made in the future.

	[bookmark: 13]Page 13

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

4

2.3 Selection of technology

The available technology for this application spans several dimensions:

- Hardware Platform

- Operating System

- Programming Language / Code base

- Call Signaling Protocol

- Media Transmission Protocol

- Authentication Protocol

- Wireless Networking capability

The above can be quite interrelated, but because the focus is on a handheld

device and the technical requirements may necessitate fairly low-level access to

the machine and operating system, the most appropriate platform and Operating

System combination is a Linux handheld device. The following table summarizes

the main alternatives in that area, as of the fall/winter of 2001 (all are based on

Intel's StrongARM 206 MHz processor).

Memory

Audio

Compact

Flash

PCMCIA

Input

methods

Compaq

iPAQ

32MB RAM,

16MB flash

Jack for

output,

integrated

microphone

No

Yes

(through

special

sleeve)

Handwriting

recognition

Samsung

YOPY

64MB RAM

(developer's

version: 32),

16MB flash

Jack for

output,

Integrated

microphone

One type-II

in the

developer's

version

No

Keyboard

(production

version

only)

	[bookmark: 14]Page 14

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

5

only

Sharp

Zaurus

64MB RAM

(developer

version: 32),

16MB flash

Input and

output

through

single jack

One type-II

slot

No

Retractable

keyboard

Table 1 Linux-based Personal Digital Assistants [10]

The handheld of choice for this application was Sharp's Zaurus, a recently

launched product that features both a Compact Flash slot and a Secure

Digital/Multimedia Card input, while providing a combined headset and

microphone jack and full-duplex sound processing capabilities. It is based on a

206-MHz ARM processor, and the developer's version has 32MB of RAM (the

consumer version, released in April 2002, has 64MB).

The above met our requirements for this small platform: network connectivity

(through the use of an 802.11b Compact Flash card, and the lack of such

capabilities disqualified the YOPY), both audio input and output, and the ability to

use a headset (and not having to bring the device close to one's mouth in order

to talk, as in the iPAQ).

Regarding the software component of this project, the main signaling protocols

available are H.323 (an ITU standard) and the Session Initiation Protocol (SIP,

an IETF standard). While the former is more widely used, the latter is rapidly

gaining popularity, along with its sister standard, Session Description Protocol

(SDP) used for transmitting and negotiating information regarding the sessions. A

comparison between the two can be summarized in the following table:

SIP

H.323

Architecture

Horizontal protocol

Vertical protocol suite

Complexity

Low

High

Encoding

Text

Binary

	[bookmark: 15]Page 15

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

6

Scalability

Good

Poor

Internet "fit"

Good

Poor

Use

Limited but growing

Widespread

Table 2 Comparison between SIP and H.323 [21]

As a consequence, the protocol of choice for signaling is SIP, in combination with

SDP. When it comes to the actual voice transmission, there is a single dominant

protocol: the Real-time Transport Protocol (RTP). RTP is responsible for

transmitting real-time data and supports timing reconstruction and loss detection;

it uses UDP instead of TCP due to the nature of the transmission.

A previous Information Networking Institute thesis ("Wavelink", by N. Gupta, V.

Keswani, H. Mak, R. Narjala and A. Pavuluri [5]) had resulted in an application

with a preliminary SIP stack, interfacing with an RTP stack for the media

transmission portion. This infrastructure, implemented in C++ and for a Linux

architecture, made up an ideal code base for the purposes of this thesis. In the

following table one can see the features implemented by the Wavelink stack, as

well as the ones partially implemented or missing.

Feature

Wavelink implementation

Parser

Partial (not interoperable on

any test made)

Session Initiation

Complete

Session Termination

Partial (not fully

interoperable)

Audio application

Complete

Call acceptance

Complete

Call rejection

Missing

Authentication

Missing

Ability to choose between direct calls and Missing

	[bookmark: 16]Page 16

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

7

calls through proxy

Response to all requests

Missing

Call progress feedback to user

Missing

Exponential backoff periods between

retransmissions

Complete

User preferences

Missing

Contact management

Missing

Registration

Partial (non interoperable

with current SIP Registrar

Server)

Periodic Registrations

Missing

Table 3 SIP functionality in the Wavelink system

Finally, most projects of this kind, while acknowledging the importance of

security, only include it in the "future work" section. One of the goals of this

thesis, however, was to produce an application that can be actually used by

members of the Carnegie Mellon University community. This poses challenges

like the monitoring of the Proxy and Registrar Servers, but most importantly, on

the SIP gateway to the Public Switched Telephone Network that the Information

Networking Institute currently operates

1

. Without proper access control, anyone

would be able to make costly toll calls to landlines. Furthermore, with billing

functionality in place, one can exercise complete control over which calls users

can make and how they pay, on an individual basis.

Choosing which authentication protocol to use has been a much easier decision

than the others. SIP supports Basic and Digest Authentication; the former sends

the credentials in plain text across the network, while the latter has a challenge-

response mechanism that does not reveal a user's password. As a result, the

authentication protocol of choice for this project was Digest Authentication.

1

 Cisco Systems 2600 Multiservice Router/Gateway

	[bookmark: 17]Page 17

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

8

Having set up the fundamentals on which this project will be based, the next

chapter will discuss the main technologies used, thus providing the reader with

the knowledge necessary for following the remainder of this document.

	[bookmark: 18]Page 18

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

9

3. Underlying Technology Overview

The main technologies used in this application are:

- Session Initiation Protocol (SIP, RFC 2543 [8])

- Session Description Protocol (SDP, RFC 2327 [7])

- Real-time Transport Protocol (RTP, RFC 1889 [20])

- Digest Authentication (RFC 2617 [2])

3.1 Session Initiation Protocol (SIP) and Session Description

Protocol (SDP)

The Session Initiation Protocol is a standard for initiating, modifying and

terminating communication sessions; it lies within the application layer of the OSI

reference model, and is independent of the underlying layers. It is based on

HTTP/1.1 (RFC 2616 [3]), and features few message interactions per session, as

well as simple analysis and debugging due to its text-based encoding.

SIP has been gaining in popularity compared to its competitor, H.323, since its

second version was standardized by the Internet Engineering Task Force, in

1999. In addition to this, it has been adopted as the signaling protocol for Third

Generation Wireless Systems (3G) [1] and for Windows XP [12], thus promising

even more widespread use in the near future.

Each SIP user has a unique address that resembles email addresses, with the

prefix "

sip:

". For instance, my SIP address is

<sip:thanos@ini.cmu.edu>

. Each

such address constitutes a SIP Uniform Resource Identifier (URI).

	[bookmark: 19]Page 19

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

10

The Session Description Protocol is a separate IETF standard used by SIP to

describe the session. It is, like SIP, text-based, consists of a series of

<attribute>=<value>

 lines, and constitutes the body of a SIP message. For

instance, a user may attribute the session with the session owner, a subject, and

the media details, with the following lines appended after the SIP headers:

o=thanos 0 0 IN IP4 128.2.237.89

s=Re: Party!!!

m=audio 4987 RTP/AVP 0

The popularity that SIP enjoys has resulted in an abundance of documentation

about it, and for the purposes of this document, the focus will be on the

functionality that is directly related to the work done. As a result, the remainder of

this section will associate the actions a user will take on an actual phone call with

SIP messages.

The entities involved in the exchange of these messages are:

??

SIP client: User Agent Client

??

SIP server: User Agent Server

??

Registrar Server (or Location Server)

??

Proxy Server

The User Agent is the basic software component of a SIP stack. It is responsible

for initiating and receiving messages, holding the data structures making up the

client's state, as well as interfacing with the applications the stack supports.

The Registrar Server is similar to a lookup service; it associates each SIP

address to one or more others. For instance, my SIP address,

<sip:thanos@ini.cmu.edu>

, is an alias for my real location, which may be

	[bookmark: 20]Page 20

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

11

<sip:root@fluorine.ini.cmu.edu>

. The association between these SIP URIs is

held within the Registrar Server's database.

The Proxy Server acts in a way similar to an HTTP proxy; it forwards the

requests it receives to the appropriate party, which it determines with the help of

the Registrar Server. For example, when someone wants to call me, they will

send a message to the Proxy Server at

ini.cmu.edu

, requesting that

<sip:thanos@ini.cmu.edu>

 gets called. The address of the Proxy Server is

typically a known entity, although the related literature mentions how a client may

go about locating the appropriate address via DNS [4, 8].

Registering a user

When users want to add contact information to be associated with their unique

SIP addresses, they have to send a registration request to a Registrar Server.

This request will contain their unique address and the actual contact address,

and, minimally, a transaction sequence number, a Call ID which is made globally

unique by including the initiator's host address, and the "last hop" (Via field).

For instance, when I want to let the Registrar Server know that I will be available

at

<sip:root@fluorine.ini.cmu.edu>

for the next hour (3600 seconds), I send a

request of type REGISTER in a message like the following:

REGISTER sip:franc.ini.cmu.edu SIP/2.0

CSeq: 1 REGISTER

Call-Id: 2_971750444@fluorine.ini.cmu.edu

Contact: sip:root@fluorine.ini.cmu.edu:5060

Expires: 3600

From: sip:thanos@ini.cmu.edu

To: sip:thanos@ini.cmu.edu

User-Agent: INI SipPhone

Accept-Language: en

Via: SIP/2.0/UDP 128.2.237.122:5060

	[bookmark: 21]Page 21

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

12

Although this message includes an

Expires

 field, it is not required because

Registrar Servers typically have default expiration periods; including the field in

the message ensures that the appropriate registration takes place.

When I want to notify the server that I am no longer available at

<sip:root@fluorine.ini.cmu.edu>

, I will send the same message as above, but

with an expiration value of 0 (zero). The server will then delete that registration.

Making a call

When a user makes a call, the User Agent Server of the SIP layer sends a

Request message of type INVITE. This message has to include at least the SIP

address of the caller and the callee, a sequence number, a Call ID and the Via

field.

An example for such a message is:

INVITE sip:94123617323@franc.ini.cmu.edu;user=phone SIP/2.0

CSeq: 2 INVITE

Call-Id: 3_1229208662@fluorine.ini.cmu.edu

Contact: sip:root@fluorine.ini.cmu.edu:5060

Content-Length: 158

Content-Type: application/sdp

From: sip:thanos@ini.cmu.edu

Timestamp: 1020973456

To: sip:94123617323@franc.ini.cmu.edu

User-Agent: INI SipPhone

Accept-Language: en

Via: SIP/2.0/UDP 128.2.237.122:5060

 v=0

o=thanos 0 0 IN IP4 128.2.237.122

m=audio 4000 RTP/AVP 0

a=rtpmap:0 pcmu/8000/1

	[bookmark: 22]Page 22

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

13

SDP headers like the ones above generally do not change much across

sessions. Their first line shows the protocol version number, and the second

describes the "owner" of the stream and includes IP identifiers. The media line (

m

)

describes the session's media attributes; it contains the medium type (

audio

), the

port the sender is listening on for media packets (

4000

), the protocol (

RTP

) and

the protocol profile (

AVP 0

, i.e. G.711) [6]. If the sender's client supported multiple

profiles, their corresponding numbers would follow. Following it, the attribute line

(

a

) is providing the optional details for each medium being used. In this case, it

simply expands on the attributes of the RTP stream (profile, encoding/sampling

frequency/number of channels). In the case of multiple media being described,

each will have a distinct attribute line and the receiver will be able to distinguish

between them and associate with the supported profiles based on the

rtpmap

value.

This message can either be transmitted directly to the other party or through a

proxy. Sending the message to the Proxy can only be successful if the callee is

registered on the Registrar Server, otherwise the Proxy will notify the caller that

the requested user is not found. On the other hand, the direct call will only be

successful if there is a SIP client on the other end and the requested user is

active there.

Figure 1 - Direct SIP call

Call (Session Initiation)

Accept Call

Session establishment

	[bookmark: 23]Page 23

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

14

Figure 2 - Call through SIP proxy

User receiving a call

When a user receives a call like the one above, its User Agent Server may

respond with a message that notifies the other end that it is trying to locate the

user (thus acting as an implicit acknowledgement). This message has a

response code of 100, and belongs to the group of "Informational" responses.

SIP/2.0 100 Trying

Via: SIP/2.0/UDP 128.2.237.122:5060

From: sip:user@ini.cmu.edu

To: sip:thanos@ini.cmu.edu

Call-ID: 3_1229208662@dsr.ini.cmu.edu

CSeq: 9345744 INVITE

Content-Length: 0

After checking whether the requested user is available, the User Agent Server

will generally respond with messages of either of these types: Ringing (code:

Call

Call

Request recipient's

address

Response

Accepted

Accepted

Session establishment

Registrar Server

Proxy Server

	[bookmark: 24]Page 24

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

15

180), User Not Found (code: 404), Moved Permanently (code: 301), or Moved

Temporarily (code: 302). The remainder of the message will be the same.

In the case of a "180 Ringing" response, the User Agent Server waits until the

callee "picks up the receiver"; at that point, it sends a "200 OK" to the caller,

notifying it that the call has been established. The caller will respond with an

acknowledgement (ACK) message.

SIP/2.0 200 OK

Via: SIP/2.0/UDP 128.2.237.122:5060

From: sip:user@ini.cmu.edu

To: sip:thanos@ini.cmu.edu;tag=9EF0D911-1AE

Call-ID: 3_1229208662@dsr.ini.cmu.edu

Contact:<sip:thanos@128.2.237.122:5060;user=phone>

CSeq: 9345744 INVITE

Content-Type:application/sdp

Content-Length: 134

 v=0

o=user 8045 5614 IN IP4 128.2.237.89

c=IN IP4 128.2.237.89

t=0 0

m=audio 19054 RTP/AVP 0

Proxy receiving a call

When the INVITE request goes through a proxy, the proxy will send a "100

Trying" message to the caller, provided that it has an active registration for the

user (otherwise, it will terminate the transaction with a "404 User Not Found"

response). It will then forward the request to the appropriate User Agent Server,

which will behave as described above, sending its subsequent responses

through the proxy server. This facilitates the recording of sessions in the server,

which can help build billing services.

	[bookmark: 25]Page 25

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

16

Note that the exchange of messages described above does not take

authentication into account; the description of such messages is discussed under

the security considerations later in this chapter.

This thesis uses the SIP Proxy and Registrar Servers supplied by dynamicsoft©

2

;

they support basic and digest authentication, call detail records, as well as

service bundles and the Call Processing Language (CPL).

3.2 Real-time Transport Protocol (RTP)

The Real-time Transport Protocol, as its name implies, is a protocol for transport-

layer transmissions of real-time data (such as audio and video). It does not make

any guarantees regarding the quality of the transmission, but typically takes

advantage of the low overhead involved in UDP (as opposed to TCP), since real-

time media cannot afford the delay of TCP retransmission.

The necessary control for establishing, maintaining and terminating a real-time

data transmission session is provided by a sister protocol, the RTP Control

Protocol (RTCP).

An RTP packet includes:

??

A sequence number (2 bytes); this enables the receiver to determine

whether a packet is arriving in order or, if it is old, to discard it. The initial

sequence number is randomly assigned.

??

A timestamp (4 bytes); being a part of a real-time session, each packet

has a notion of the linear monotonic time it was produced. Since a

receiver will typically buffer data ahead (using a dejitter buffer), it can use

this field to position the data in time.

2

 SIP Proxy Server Version 5.2.1.7 and SIP Location Server Version 4.0

	[bookmark: 26]Page 26

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

17

??

A synchronization source and contributing source identifiers, used for

session multiplexing purposes (4 bytes each).

??

The payload (data; variable size).

In the case of packets missing or arriving out of order, RTP enables filling of the

voids with "comfort noise" [14] (for audio streams) or extrapolation.

Focusing on the audio payload, it consists of the data that the audio device driver

supplies to the RTP layer; most audio drivers can be configured to supply

different types of data (e.g. 16-bit signed little-endian) and with different sampling

parameters (including sampling frequency, number of channels and number of

bits per channel). The two ends of the transmission must agree on the encoding

in each direction in order to engage in an intelligible conversation.

The telecommunications industry has specified several standard codecs through

the CCITT/ITU-T, including recommendation G.711 [15]. It defines PCMU (PCM-

µ-law companded) and PCMA (PCM-A-law companded), used in North American

and European telephone exchanges respectively.

In this project, an RTP application is launched upon successful establishment of

a session. The codec used is PCMU; its payload type (the number 0) is included

in the "media" line of the SDP portion of the message sent during an INVITE:

INVITE sip:94123617323@franc.ini.cmu.edu;user=phone SIP/2.0

CSeq: 2 INVITE

Call-Id: 3_1229208662@fluorine.ini.cmu.edu

Contact: sip:root@128.2.237.122:5060

Content-Length: 158

Content-Type: application/sdp

From: sip:thanos@ini.cmu.edu

Timestamp: 1020973456

To: sip:94123617323@franc.ini.cmu.edu

User-Agent: INI SipPhone

Accept-Language: en

Via: SIP/2.0/UDP 128.2.237.122:5060

	[bookmark: 27]Page 27

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

18

v=0

o=thanos 0 0 IN IP4 128.2.237.122

s=3_1229208662@fluorine.ini.cmu.edu

c=IN IP4 128.2.237.122

t=0 0

m=audio 4000 RTP/AVP 0

a=rtpmap:0 pcmu/8000/1

The actual mechanics of preparing the audio for transmission are detailed in the

implementation section.

3.3 Digest Authentication

Digest authentication is built in such a way that it can verify that two parties know

a shared secret (in this case, the password), without actually communicating that

secret either in plaintext or in an encrypted form on its own. It is based on a

challenge-response paradigm: the server sends a challenge and expects a

response that will only be valid if it uses the secret in its calculations. Digest

Authentication was originally built for HTTP authentication (RFC 2617 [2]), and

since SIP is quite similar to the HTTP protocol, it uses it as well.

The most widely used algorithm for calculating digests and, therefore, providing

challenges and responding to them, is the MD5 checksum [13], developed by R.

Rivest and RSA Data Security, Inc. [17].

When a User Agent sends a request to the Proxy or Registrar Server (like the

ones included earlier in this chapter, for instance), the Server will check whether

authentication is enabled for the particular user. If so, it will respond with "401

Unauthorized" (for Registration requests) or "407 Proxy Authentication required",

together with a challenge. This challenge (also called a "nonce") is typically a

hash over a few fields that make it less sensitive to replay attacks. Most

frequently, these fields will minimally include a timestamp and a secret key

residing on the server.

	[bookmark: 28]Page 28

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

19

As a result, an example response for the REGISTER request given earlier can

be:

SIP/2.0 401 Unauthorized

Via: SIP/2.0/UDP 128.2.237.122:5060

From: sip:thanos@ini.cmu.edu

To: sip:thanos@ini.cmu.edu;tag=0.9806376119931339037cb

Call-ID: 2_1592914782@fluorine.ini.cmu.edu

CSeq: 1 REGISTER

WWW-Authenticate:Digest realm="ini.cmu.edu",

domain="sip:franc.ini.cmu.edu",

nonce="4XeAA6D5dWCgCPy7MKR+qA==", algorithm="MD5"

Content-Length: 0

Upon receipt of this response, the User Agent will have to acknowledge it and

generate a new request, incrementing the sequence number and, of course,

responding to the challenge with a digest. The digest is calculated as follows:

A1 = concat(username,":",realm,":",password)

A2 = concat(Method,":",domain)

Digest = MD5(concat(MD5(A1),":",nonce,":",MD5(A2)))

where concat("one",":","two") == "one:two" and

Method == "INVITE" or "REGISTER"

The new request the User Agent will send is like the following:

REGISTER sip:franc.ini.cmu.edu SIP/2.0

CSeq: 2 REGISTER

Call-Id: 2_1592914782@fluorine.ini.cmu.edu

Expires: 3600

From: sip:thanos@ini.cmu.edu

To: sip:thanos@ini.cmu.edu

Contact: sip:root@128.2.237.122:5060

User-Agent: INI SipPhone

Accept-Language: en

Authorization: Digest

username="test",realm="ini.cmu.edu",nonce="4XeAA6D5dWCgCPy7

MKR+qA==",response="b6bba2985e55dfccf90a02053abec778",uri="

sip:franc.ini.cmu.edu"

	[bookmark: 29]Page 29

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

20

Via: SIP/2.0/UDP 128.2.237.122:5060

Following successful receipt of this message and verification of the user's identity

by the Server, the request goes through. The lifetime of the nonce is set on the

SIP server, and in general, the shorter it is the better; the main advantage of

having longer challenge lifetimes is that once a client authenticates for a

particular request through a response to a challenge, it can include the same

response in subsequent requests until the challenge changes (and the server re-

requests credentials).

Digest Authentication is not immune to attacks. In particular, a client can be a

victim to a man-in-the-middle attack, whereby a fake server requests only basic

authentication, or chooses a challenge that will easily lead to the password given

the response sent from the client. On the other hand, replay attacks are not very

likely, because of the timestamp which is included in the challenge. In order to

further decrease the likelihood of such an attack, it has been proposed that

Digest Authentication for SIP uses a "predictive nonce" (or pnonce), which is

computed by hashing over the source IP address, the From and To fields in a

SIP message, and the Call-ID [9].

	[bookmark: 30]Page 30

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

21

4. System Architecture

This section of this document deals with the architecture and design of the

system. It will follow a top-down approach, providing a higher-level view of the

system's architecture first.

The purpose of this chapter is to illustrate the boundaries between the system's

various components, as well as the interactions and data flows among them. The

inner workings of each component will be detailed in subsequent chapters.

4.1 Higher-level Design

This is an illustration of the conceptual positioning of the components of the

system in layers:

Figure 3 - System Architecture diagram

The User Agent is, as in most SIP applications, the "heart" of the system. It

contains all the logic resulting from the SIP specification and carries a substantial

portion of the burden of the application. As a consequence, the following

discussion starts with the User Agent Layer, and follows the path towards the

Graphical User Interface

 Sockets:

Receiving Sending

 Parsers:

Reverse Direct

Authentication

Module

Application Manager

User Agent

Server Client

Application Layer

Real-time

Transport

Protocol

Network

	[bookmark: 31]Page 31

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

22

Transport Layer. After that, it will deal with how the end user and the supported

application interact with it, by discussing the Graphical User Interface and the

Application Manager Layers, respectively.

4.2 User Agent Layer

The User Agent Layer is conceptually divided into two parts: the Server and the

Client. The Server is responsible for analyzing incoming SIP messages (e.g.

INVITE requests from someone else). The Client is responsible for sending SIP

messages, possibly after being instructed to do so by the Server (e.g. send a

REGISTER request or respond to an INVITE request).

4.3 Authentication Sub-Layer

The Authentication portion of the User Agent is responsible for analyzing and

creating the authentication-related part of SIP messages; it only becomes part of

the mechanics of the process for the messages that actually require this. This

makes it possible for the user to disable authentication procedures (which will, of

course, make sense only if the SIP server does not require authentication for the

particular user).

As a result, when a message with authentication-related fields arrives, the

Authentication component will store them in the relevant data structures. These

may be, for instance, parts of the challenge that the SIP server sent; in that case,

the User Agent client will instruct the Authentication component to calculate the

response that will be included in the next message.

4.4 Parsing Layer

	[bookmark: 32]Page 32

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

23

As is shown in the diagram, the User Agent layer communicates with the

Transport layer (and through it with the outside world) through the Parsing layer.

This is responsible for parsing the incoming messages into SIP and SDP data

structures that the User Agent can understand and manipulate (direct parsing),

as well as create the outgoing messages from SIP and SDP data structures that

the User Agent has constructed for marshalling (reverse parsing). As a

consequence, the direct parser interacts with the User Agent Server, while the

reverse parser interacts with the User Agent Client.

The parsing layer is also responsible for detecting errors in incoming messages.

4.5 Transport Layer

Following the pattern of the client and server paradigms, the Transport Layer can

be divided into two parts: the incoming (listening) socket and the outgoing

(sending) one.

As per the SIP specification, the listening socket will be accepting messages

from the outside world. On receipt of such a message, it will pass it to the higher

layers, as described above. Each outgoing socket takes the corresponding

message from the higher layers and takes care of its transmission to the other

end.

4.6 Application Manager Layer

The Application Manager is excluded from the mechanics of the system unless

(a) user intervention is involved or required, or (b) an exchange of SIP messages

leads to interaction with the applications that the stack supports.

As a result, all the user requests go through the Application Manager Layer,

since end users are only interested in the result in terms of the functionality

visible to them: a call being made, a call that needs to be answered, logging in,

	[bookmark: 33]Page 33

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

24

and so on. Furthermore, the applications supported by the stack will be launched

and terminated by this layer; therefore, and in the case of this telephony

application, the audio portion is controlled by this layer.

4.7 Graphical User Interface Layer

All a user sees is the Graphical User Interface, which communicates with the rest

of the application by interacting downwards in the illustration provided earlier.

This layer is therefore responsible for enabling users to use a dialpad, make and

receive calls, register with the SIP server, manage contacts, redial numbers and

so on.

Furthermore, it does some basic error checking in order to prevent a user

mistake propagating downwards; for instance, it is looking for incorrect SIP

addresses, Registrar and Proxy Servers, existent contact entries, and the like.

4.8 An example of component interaction

The following is an example of the interaction of components; the use case

selected is that of an outgoing call. In the following diagram the arrows represent

the calling of the various functions and the transition of control across the

system. Along the arrows are numbers to guide the reader through the

description that follows the diagram.

	[bookmark: 34]Page 34

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

25

Figure 4 - Component interaction example

Please note that this is a simplified trace leaving out details; for example, the

"100 Trying" and "180 Ringing" messages preceding the "200 OK" response, as

well as some acknowledgements are missing. Furthermore, each different

incoming message results in updates to the user's screen (like "Ringing...").

1. The user clicks on the desired buttons, forming a number to call; she then

presses the "Call" button. The GUI detects that this is a valid number and

makes a request to the Application Manager.

2. The Application Manager receives the request (that so far only has the

dialed number), adds the necessary application-specific parameters (like

the audio requirement), and then passes the request to the User Agent

Client.

3. The User Agent Client fetches the appropriate data for the purposes of

creating a message: the caller, the contact address, the sequence

number, the call-ID, and the nature of the request (INVITE), among others.

It then asks for its reverse parsing of the request into a message and

spawns a thread that will be responsible for its transmission. The request

is marked as "pending".

Graphical User Interface

 Sockets:

Receiving Sending

 Parsers:

Reverse Direct

Authentication

Module

Application Manager

User Agent

Server Client

Application Layer

Real-time

Transport

Protocol

Network

1a

1b

2

3

4

5

18

7

6b

6a

8

9

10

11

12

13

 14a

14b

15

16

17

	[bookmark: 35]Page 35

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

26

4. After turning the request data structure into a plaintext message (an

INVITE request-type message), the Reverse Parser passes it onto the

sending socket created in the thread.

5. The Transport Layer's sending socket sends a UDP datagram to the

appropriate receiver, and repeats until it has tried enough times or it is told

to stop.

6. The Transport Layer's receiving socket receives a message; it promptly

pushes it to the Parsing Layer.

7. The direct parser turns it into a data structure, passing it onto the User

Agent.

8. On receipt of the data structure, the User Agent Server realizes it is for the

previously pending request, since it was created from a "407 Proxy

Authentication Required" response from the Proxy server, with the

appropriate sequence number and the same Call-ID. It instructs the thread

it had created to stop sending the datagram, since the data has already

gone through.

9. The User Agent Server contacts the Authentication sub-layer with the

corresponding fields (the realm, the method and the nonce from the

message, as well as the username and the password of the appropriate

user), looking for a response to the challenge of the Proxy server.

10. The Authentication sub-layer calculates the response, and passes it back

to the User Agent Server.

11. Having received the response, the User Agent performs some necessary

operations (like incrementing the sequence number as is required by the

protocol) and repeats the previous request with a new thread.

12. As in (4)

13. As in (5)

14. A new message arrives to the receiving socket, as in (6), and it pushes it

up.

15. As in (7)

	[bookmark: 36]Page 36

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

27

16. The User Agent notices that the message is a "200 OK" from the other

party. It instructs the Application Manager to launch the media

transmission application...

17. ...and notifies the user by showing the corresponding message on her

dialpad.

18. The Application Manager satisfies the User Agent's request.

	[bookmark: 37]Page 37

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

28

5. Design and Implementation

This chapter deals with the design and implementation of the SIP stack, the

Authentication sub-layer, the Graphical User Interface and the media

transmission (RTP) component. It should enhance the understanding of the way

in which the various modules outlined in the System Architecture chapter

contribute the functionality that makes up the application, and be helpful to

anyone willing to enhance it.

5.1 Session Initiation Protocol (SIP) stack

The SIP stack makes up most of the functionality provided, and is naturally the

basic component of this system. This section will describe the design and

implementation of the mechanisms that create the behavior that complies with

RFC 2543 [8].

The SIP stack implemented can be divided into the following components

3

:

- Application Manager

- User Agent

- SIP and SDP parser

- Transmission and receipt of messages.

3

 Please note that although the Authentication component conceptually belongs to the above list,

it is separated for the purposes of this discussion since authentication is not a requirement

according to the SIP specification.

	[bookmark: 38]Page 38

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

29

Data Structures

While the interaction of the above components is outlined in the previous

chapter, the data structures they use are not divided that clearly among them.

This is because of the extensive sharing of data that is required for the stateful

nature of this signaling stack. The following is a description of the fundamental

data structures used by the SIP stack, and have not changed since the Wavelink

implementation:

??

Users

o

End user of the application

o

Participants in sessions

??

Sessions (pending)

o

Call-ID

o

Method

o

Participant

??

SIP Messages

o

Fields

o

Values

??

SDP Messages

o

Attributes

o

Values

The Sessions, among the fundamental data structures, are associated with the

others as is depicted below:

	[bookmark: 39]Page 39

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

30

Figure 5 - Association between main User Agent data structures

Implementation

The SIP engine can be divided into two parts, as in the User Agent division into a

Client and a Server: one is dealing with incoming messages (either new requests

or responses to previous ones), and the other is dealing with the user's requests

(thus constructing messages and sending them across the network). On the

other hand, it is very rare that, according to the specification, the two parts do not

get intermixed. When, for example, an INVITE request is received, we still need

to return an acknowledgement, while at the same time performing the necessary

functions for proceeding with the handling of the request itself.

As a consequence, the SIP stack is designed in such a way that the incoming

messages follow a relatively standard path (according to their nature, of course),

while using both the "Client" and the "Server" parts of the User Agent. Since the

outgoing messages are only a part of the interaction each, the stack proceeds in

Sessions

Session A

Call-ID

Message X

Message Y

Participant

Session B

Call-ID

Message Z

Participant

	[bookmark: 40]Page 40

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

31

a way that can be depicted by the following simplified flowcharts, which show an

outgoing REGISTER request and an incoming INVITE:

sendRegister()

handleRegisterRe

sponse()

Received

Response?

Need to send ACK?

Keep relevant

state and data

200 OK

sendAck()

wait for

responses...

Response not 200 OK

ensureAckG

etsThrough()

Figure 6 - REGISTER flowchart

wait for

messages

Notify user

through the GUI

Send "200 OK",

keep state

User Accepts

sendAck()

received an

INVITE request

ensureAckG

etsThrough()

Send "603 Decline"

User Declines

Figure 7 - Incoming INVITE flowchart

	[bookmark: 41]Page 41

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

32

In the above figures, the REGISTER request comes through the Application

Manager and the INVITE request from the Transport Layer. Beyond these, the

interaction of the User Agent with the lower layers of software are quite frequent

and depend on the transmission and receipt of the corresponding messages.

These interactions are primarily facilitated through the use of threads. The single

thread monitoring the port on which the application is listening for messages is

pushing them upwards. Almost every time the application sends a message

across, a new thread is spawned in order to carry out the request, without

holding down the main SIP engine from dealing with other messages or

performing the necessary operations on data structures.

It would be a mistake to assume that all incoming messages belong to the same

session! It is not impossible to receive an INVITE request while registering, for

example quite the contrary. This is why concurrency and synchronization

controls are required in the right places in order to ensure the correct multiplexing

of requests with responses, and that the appropriate action is taken at every

step.

These controls are exercised through the use of semaphores: there is one

semaphore associated with each Session object. As a result, synchronization

becomes straightforward, since each SIP message data structure contains the

Call-ID that provides the appropriate Session instance; through that instance a

thread can gain exclusive access to the flow of the messages.

The session associations provided through this implementation do not only

facilitate synchronization and proper handling of messages; they also help in

determining duplicate messages. Each message can be placed in time not

necessarily by a timestamp (it is not required), but by the combination of the Call-

ID, the sequence number and the method. For example, consider the messages

A and B, which have the same Call-ID:

	[bookmark: 42]Page 42

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

33

 Message A:

REGISTER sip:franc.ini.cmu.edu SIP/2.0

CSeq: 1 REGISTER

Call-Id: 2_1592914782@fluorine.ini.cmu.edu

Contact: sip:root@128.2.237.122:5060

Expires: 3600

From: sip:thanos@ini.cmu.edu

To: sip:thanos@ini.cmu.edu

User-Agent: INI SipPhone

Accept-Language: en

Via: SIP/2.0/UDP 128.2.237.122:5060

Message B:

 ACK sip:thanos@ini.cmu.edu;tag=0.9806376119931339037cb

SIP/2.0

CSeq: 1 ACK

Call-Id: 2_1592914782@fluorine.ini.cmu.edu

Content-Length: 0

From: sip:thanos@ini.cmu.edu

To: sip:thanos@ini.cmu.edu;tag=0.9806376119931339037cb

User-Agent: INI SipPhone

Accept-Language: en

Via: SIP/2.0/UDP 128.2.237.122:5060

It is clear that B was an acknowledgement for a response sent for the same call

(an "200 OK" response for example).

Regarding the messages and their data structures, extreme care has been taken

in order to ease modifications that may be required by future incarnations of the

SIP protocol, or extensions specific to this implementation. (One can extend the

protocol to suit one's needs; for instance, custom instant messaging can be

implemented. However, the implementation should not rely on the assumption

that the other end will have the same features, thus maintaining its

interoperability.)

In particular, each supported field value is represented by a distinct C++ object,

and multiple such values may be attributed to a single Field. For example, some

messages have multiple "Via" field values. The implementation allows the

	[bookmark: 43]Page 43

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

34

programmer to lookup the values of a particular field by name, returning the

corresponding vector or an empty pointer.

As a result, the SIP and SDP direct and reverse parser are a layer of C++

software, the core of which was generated by flex and bison. The field values

extracted (or to be populated) are simply added to the tail of the list of the

existing ones for the particular field.

This approach has the added benefit of making responding to messages very

efficient, since this now typically involves simply taking the original message and

changing some fields, before handing it to the components responsible for

reverse parsing and transmission.

Overall, the SIP stack is designed slightly differently compared to the Wavelink

system. The main difference has to do with the way the path of the messages is

decided: the previous design had limited flexibility as to how messages can be

handled, and that made the authentication sub-layer, discussed below, very

difficult to design and implement, because authentication causes considerable

changes to this path.

Furthermore, the implementation has been through substantial change in order to

provide the necessary functionality and conform to the SIP specification.

Because of the nature of these changes, they are quite widespread rather than

self-contained, and in almost every function in the User Agent class. The

Application Manager has received fewer changes, while the Parsing layer has

been untouched, but an intermediate sub-layer was added to address some

important issues.

5.2 Authentication sub-layer

	[bookmark: 44]Page 44

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

35

The Authentication part of the application consists of the MD5 libraries that

perform the digest, and the related data and algorithms; no provision for it was

made by the Wavelink design and implementation.

Although authentication is applicable only for INVITE and REGISTER messages,

its effects on the SIP stack are more profound. An example exchange of

messages illustrating the mechanics of authentication for SIP follows:

- The application sends a REGISTER request to the SIP Registrar server.

- Upon receipt, the server responds with a "100 Trying" message.

- As it finds that authentication is enabled for the particular user, it sends a

"401 Unauthorized" message back, along with a challenge.

- The application receives the message and performs the necessary

computations on the challenge. It then sends a follow-up REGISTER

request with the response.

- The server receives the response, sends a "100 Trying" and subsequently

performs the tasks required to record the user's registration in the

database. Upon their successful completion, it sends a "200 OK' back.

Therefore, the authentication mechanism changes the flow of messages as it

was described in the previous section. It requires the request to be restarted, but

not with a different session altogether.

Data Structures

The data structures associated with this part of the system are:

??

Challenge

??

Authentication Realm

??

Method (REGISTER/INVITE)

	[bookmark: 45]Page 45

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

36

??

Requested URI

??

Username

??

Password

??

Response

All the above are required in order to perform the computations leading to the

necessary exchange of messages. The necessary modules should therefore

share the part of the data that is constant and, whenever requested, return a

response to the challenge provided.

Implementation

As the purpose of this thesis was not to build an authentication module from

scratch, but to perform authentication when required, the relevant algorithms

were the MD5 algorithms provided by RSA Labs©, under General Public

License. These provide functionality for initializing a response with data,

performing the digest over the data, and returning it.

The SIP stack uses a custom-built API for performing these functions and for

retrieving the response. Given the earlier flow of messages, the implementation

of such functionality is similar in the cases of REGISTER and INVITE requests.

More specifically, after sending a request of this kind, the User Agent is waiting

for the SIP server's response. Upon receipt of a response that indicates that

authentication is required, it returns an acknowledgement and requests from the

authentication module the digest response to the challenge provided. When this

is done, it adds the corresponding field to the SIP message and, as per the

specification, increments the sequence number but leaves the Call-ID untouched.

It then repeats the request, following the normal SIP procedures, since the SIP

	[bookmark: 46]Page 46

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

37

server can understand that it actually is a follow-up to the previous one based on

the Call-ID and sequence number.

Notice that it is efficient to save the original SIP message in order to facilitate its

repetition after augmenting it with the corresponding fields, while nothing in the

specification of the protocol requires it to be saved. As a result, the stack saves

all the initial REGISTER and INVITE messages until the authentication response

is sent or the server instructs it that it is not needed (in the case of a user set up

on the server to bypass authentication, if the server supports such feature).

5.3 Graphical User Interface

The Graphical User Interface is an important part of any application; no matter

how good the underlying design and implementation is, a user interface that does

not properly address the needs of users can make it much less usable. For the

purposes of this system, the GUI that came with the Wavelink thesis was

removed completely.

The choice of look-and-feel is generally limited for handhelds, and this is the

case for this application as well: the Zaurus comes with support for the QT

environment [23], running a Qtopia server. Of course, since it still is a Linux

machine, it can be refurnished with the X windowing system, but implementing it

for the Zaurus would go much beyond the scope of this thesis, and the

implementation available seems to have very little support. After all, one of the

objectives of this thesis was to produce an application that can be usable with

minimal user configuration (and by an end user with no knowledge about Linux).

Qtopia comes with a package for developing custom widgets that developers can

use. It provides a "drag and drop" interface for the appearance of the widget and

	[bookmark: 47]Page 47

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

38

generates an XML file containing the details; the meta-compilers provided can

turn each such file into a C++ class that when loaded shows up as was designed.

One can subsequently subclass it and provide custom implementation for its

components and integrate it with an application.

For the purposes of this system, the necessary capabilities of a Graphical User

Interface are:

- a dialpad

- contact management support

- previous calls (both incoming and outgoing) for redialing

- registering with the SIP Server.

The actual functionality, appearance and behavior of the widgets were a product

of discussion with a few people that helped make it more user-friendly and less

intrusive or full of jargon.

The following snapshot of the dialpad should provide the reader with a better

understanding of the design and implementation of the Graphical User Interface:

	[bookmark: 48]Page 48

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

39

When pushing the buttons named "Redial", "Find", "Add", "Login", "Proxy", a new,

smaller widget appears that enables the user to perform the corresponding

functions. Furthermore, in the case of an incoming call, a widget appears

prompting the user with the options to answer or decline the call.

Data Structures

A certain amount of sharing exists between the GUI and the lower layers of

software comprising this system. The most important data are as follows:

??

username

??

password

??

SIP URI

??

registrar and proxy servers

??

current contact URI

??

number currently displayed or being called.

As mentioned earlier, the Graphical User Interface layer performs some error

checking in order to prevent errors propagating to the lower layers. This implies

that some intelligence about the above fields lies within its design and

implementation.

Implementation

Every time a button is pressed, the event handler put in place checks how it

affects the application. In the case of the button "4" on the dialpad, for instance, it

	[bookmark: 49]Page 49

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

40

updates the display of the number accordingly. On the other hand, some events

need to take place without the user intervention, being triggered from the lower

layers of software. These are primarily the handling of incoming calls and a

request to login if the token lifetime has expired or the user has resumed the

device after suspending it.

For events triggered by the user, the application first checks whether the entered

data is correct or whether the state of the application permits the requested

operation. Having passed that stage, the Graphical User Interface performs a call

to the Application Manager (the immediately lower layer and a part of the SIP

stack) in the case of a registration request or a call. If the user is simply

performing address book-type functions, this layer of software implements the

fetching and storing of contacts in the appropriate files

4

, in order to avoid passing

the data to another layer of software for this relatively simple task which does not

involve SIP-related operations or network functions.

5.4 Media Transmission (RTP)

The media transmission component consists of an implementation of the full RTP

stack (provided by Vovida© [26] under General Public License) and a layer of

software that controls the mechanics associated with the rest of the application.

As a result, this section will primarily deal with this layer rather than going into

details about the Real-time Transport Protocol.

This part of the system has been changed very little since its implementation for

the Wavelink thesis.

4

 The address book of the Zaurus adds a Unique ID to each record that acts as a primary key;

there is no documentation on how this ID is selected, and the Zaurus' will not recognize arbitrary

ones. For this reason, as a workaround, contact management is done by having an application-

specific address book: a new contact is stored in it, while stored contacts are retrieved from both.

	[bookmark: 50]Page 50

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

41

Data Structures

The main data requirements for this part of the system consist of:

??

Audio-specific information

o

Audio devices and formats

??

The other end's IP address

??

Sending port number

??

Receiving port number

In order to avoid adding unnecessary complexity to the system, the media

transmission component is an individual executable, launched from the main

program through a

fork

 and

exec

. The other end's IP address and the port

numbers are passed to it as parameters and it is responsible for setting up the

communication between the two machines, thus achieving an appropriate

separation of concerns.

Implementation

On startup, the RTP executable takes care of setting the parameters for the

sound card (16 bits per sample, single channel, 8000 Hz sampling frequency). It

then opens the device with the appropriate permissions and spawns two threads:

one for receiving and one for sending sound.

In order to conform to the supported codec (G.711), this layer of software

performs the companding from linear data to µ-law (for sending) and vice versa

(for receiving) for each packet. This results in an 8-bit per sample, single

	[bookmark: 51]Page 51

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

42

channel, 8000 Hz sound packet, which is then handed over to the RTP stack for

transmission.

	[bookmark: 52]Page 52

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

43

6. Porting to the PDA

One objective of the implementation of this system was to minimize the platform-

specific aspects in such a way that porting to any Linux device was as smooth as

possible. This section describes the general steps taken to port the system from

a Linux desktop to the PDA of choice, Sharp's Zaurus, as well as the issues

raised by some discrepancies between the two systems.

6.1 Cross-Compilation

Being a C++ implementation, this project's source code was compiled and linked

using GNU's

g++

 compiler and linker for Linux

5

. The same tool was used for

building the RTP libraries from the Vovida RTP stack, compiling the audio

application's implementation and linking with them.

In order to achieve compilation for a platform other than the development

machine, the programmer needs to use a cross-compiler suitable for the target

device. In general, the cross-compilation tools depend only on the processor of

the target device, but in some cases several device-dependent options (for

graphics or optimization, for instance) necessitate the use of device-specific

tools.

The cross-compiler and linker used for this system was GNU's generic

arm-

linux-g++

; it comes with the standard libraries compiled for the ARM processor

(like POSIX threads).

5

 The development machine used during this thesis had Red Hat © 7.1 installed, but a

downgraded

gcc

 because of known problems with the version supplied with it (2.96)

	[bookmark: 53]Page 53

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

44

In order to facilitate cross-compilation in the future, the

Makefile

 supplied

configures itself, depending on the environment variables set for the graphics

and the target system. For more details, the reader can consult the

README

file

accompanying the release.

6.2 Issues with porting to the Zaurus

The porting process to the Zaurus was slightly more complicated than changing

the commands in the

Makefile

.

One of the earliest complications was the generation of C++ code from the SIP

grammar using

flex

 and

bison

: they used a data structure that the cross-

compiler could not compile. This was solved by investigating the necessity for

using a different flavor of

flex

, and as it turned out, there is one for the ARM

processor that differs only in one of the include files; the

flex

executable is the

same. After a few changes in the source code for the application (without

breaking the desktop compilation, of course) and the inclusion of the specific file,

the cross-compiler could go ahead and produce the correct object files.

The most important issues involve the audio part of the system. A painless one is

simply that the development desktop used only one device for audio, while the

Zaurus (and some laptops) uses two (

/dev/dsp1

in addition to

/dev/dsp0

). As a

result, instead of opening one device, the Zaurus has to open

/dev/dsp1

 with

write permissions and

/dev/dsp0

with read permissions.

Unfortunately, the second issue is much more important and severely impinges

on the functionality of the system. When the audio application starts, it sets the

audio parameters of the sound device; two settings are important for this

application: (a) sampling-related and (b) buffer sizes. While sampling parameters

for both input and output (8000 Hz, mono, 16 bits per sample) were set without a

problem, the input device would not allow its user to set the buffer size. This

	[bookmark: 54]Page 54

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

45

buffer is the place where data from the device is placed before it is pushed to the

application performing a

read()

from it.

While the output device driver permitted the desired size of 512 bytes, the only

size permitted by the input device driver was 8192 bytes, which at 8000 samples

a second and 16 bits per sample amounts to roughly 0.5 seconds of audio. This

means that the application must receive half a second of audio at a time, which

will be divided into packets by the RTP stack and sent, in a burst of network

traffic, to the other end.

Figure 8 - Audio transmission from the Zaurus

The consequences from this inflexibility are two-fold: first, the incoming sound

from the microphone leaves the audio device on its way to the network with a

delay of half a second. As a result, sound from the Zaurus to any other end

arrives with, at the very least, a 500ms latency, much more than the delay the

human ear can ignore.

Additionally, this delay generates some requirements on the receiving side of this

data: since audio packets will arrive not only late but also in a burst (about 25

packets at a time, every half a second), the receiver must be able to buffer all of

them in its dejitter buffer. While most software receivers in the conducted tests

were able to deal with this requirement (including the exact same system running

on a desktop), the most problems came when the receiver was the Cisco SIP-to-

/dev/dsp1

 buffer

(size=8192 bytes)

read()

Encapsulation in

RTP packet

Transmission to

the receiver

	[bookmark: 55]Page 55

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

46

PSTN gateway operated by the Information Networking Institute. More

specifically, the gateway would not handle this much traffic at such rates and

would only be able to send about 200ms from every second

6

 to the receiving

phone through the telephone network. The INI operates a Pingtel VoIP phone

7

 as

well, which performed only slightly better, sending about 400ms worth of audio at

each second

6

.

It should be noted that traffic arriving to the Zaurus from the other end's

microphone is not only of very acceptable quality, but also has minimal delay.

Therefore, one can hear the person talking from a PSTN line through the Cisco

gateway without a problem, but the PDA user is not audible to the other end

8

.

As a result, this problem eliminates the ability to make calls from the PDA to a

telephone (the problem does not apply to the desktop version). A formal request

has been placed with the developers of the device and its ROM, but there has

not been any feedback regarding the possibility of this being fixed. The consumer

version of the Zaurus (SL-5500), which was released in the US in April 2002,

also does not allow the modification of the microphone buffer's size. On the other

hand, the general audio quality exhibited by the system when running on the

consumer version is much better, and this can be attributed to more efficient

processing of the audio data, possibly due to the increased memory capacity

(64MB compared to 32MB in the developer's version, SL-5000D). A phone call to

a landline from the consumer Zaurus through the Cisco gateway, however, is still

largely incomprehensible.

6

 These figures were based on empirical measurements only.

7

 Pingtel Xpressa ©

8

 Cisco documentation indicates a maximum dejitter buffer capability of 250 msec.

	[bookmark: 56]Page 56

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

47

7. Project Postmortem

This chapter will attempt to draw some conclusions regarding the approach used

in building the INI SipPhone. It will focus on the fact that the final product is

based, like most software, on an existing software infrastructure, as well as on

some characteristics of the components of this system that affect the end result.

Modifying and extending software

Any developer is aware of the difficulties involved in modifying, extending, or

even maintaining existing software. Although the author has been in a similar

situation a few times in the past, the size and complexity of this project made this

one distinctly different.

As mentioned earlier in this document, the code base used for the final product is

a substantial part of an earlier MSIN thesis. This report would be insufficient

without acknowledging the work the five students had put in building the

"Wavelink" system, as well as their efforts to include documentation in the source

code. Furthermore, the similar coding style (including software patterns) all

developers used was not only maintained throughout most of the implementation,

but also proved very helpful.

On the other hand, an attempt to build the desired system simply relying on the

above would not have succeeded. It took a lot of communication with the

previous developers, quite a bit of trial and error, lengthy discussions with Kunal

Trivedi who is well aware of the original design, and finally a lot of tracing of the

several threads of control co-existing in the system concurrently.

	[bookmark: 57]Page 57

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

48

What should have been done, and is the author's advice to anyone who wants to

extend software, was to have held a meeting with the previous developers very

early in the project so that sufficient understanding of the mechanics have been

shared. Although the practical problems involved in this case were not trivial, it is

probably the best way around similar situations. Thankfully, all developers took

the time and made the effort to respond to my questions as accurately as

possible, despite the long time that has passed since the development of the

"Wavelink" system.

System components

The Linux operating system on which the application was built has been around

for a long time and has all the advantages of Linux: stability, robustness, open

source, and clean interfaces. On the other hand, a lot of other components and

aspects of this application are relatively new in the market. The development

version Zaurus used was purchased about 10 days after its public release.

Additionally, the system built is the first one of its kind available for a consumer-

level Linux device, to the best knowledge of the author.

Consequently, there is a combination of immature components, characterized by

lack of real support, and growing but limited development expertise. In addition to

this, the fact that Linux is not a commercial operating system and thus can bring

miniscule revenues to the manufacturers of the devices using it, makes

availability of device drivers for an even less widespread system such as a PDA

problematic, to say the least.

Among the results of this problem were, for instance, the lack of support for most

802.11b wireless cards for the Zaurus for a long time, but also the unsuccessful

attempts to get around the problems with the audio device by contacting the

manufacturers.

	[bookmark: 58]Page 58

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

49

There is no doubt that these obstacles will be overcome in the future. After all,

the past year has seen a few products combining PDA and phone functionalities

(included in Appendix V); on the other hand, they have received generally

unfavorable reviews.

	[bookmark: 59]Page 59

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

50

8. Future work

While the functionality desired from the part of the system has been reached,

there is definitely room for improvement and, of course, added functionality.

The first candidate for future work is the parsing layer, for two distinct reasons.

First, the grammar generated by

flex

 and

bison

 makes up a relatively large

fraction of the executable; redesigning it to reduce its size can make the

application more compact. Furthermore, the direct parser actually consists of two

sub-layers: because the original parser was not conforming to the standard, there

had to be an additional one, which eliminates the unnecessary lines from the

messages, although this should be done within the same layer.

Another possibility that may provide better functionality and expose the

application to more users is porting it to the Compaq iPAQ. The iPAQ does not

have the sound device problems the Zaurus has, and can run Linux (although

Linux is not officially supported!); most importantly, it is among the best selling

PDAs. In order to port the software to an iPAQ running Linux, one has to install

the QT graphics environment, cross-compile the application using the iPAQ-

specific compiler, and deal with any device-specific issues that may arise.

Regarding possible additional functionality, support for video- and multi-

conferencing can be implemented. For the case of video, apart from the

computing power and equipment requirements, one has to add support for a

videoconferencing application (like

vic

). This involves simply recognizing the

relevant SDP headers and launching the application as required.

When it comes to multi-conferencing, SIP supports it by issuing as many

INVITEs as the participants. Most of the complication is within the audio

	[bookmark: 60]Page 60

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

51

application, since the RTP side will need to compose a single audio stream from

multiple ones and take care of volume normalization.

Instant Message and Presence can be implemented through SIMPLE (SIP for

Instant Messaging and Presence Leveraging Extensions), and the extensions

proposed in the related draft (draft-ietf-simple-presence-06 [16]). Among the

specific requirements for such an implementation are the new SIP request types

(SUBSCRIBE and NOTIFY) as well as a SIP Presence server.

Finally, and taking advantage of the mobility provided by a Personal Digital

Assistant combined with network connectivity, a lot can be achieved by adding

location-based services. Specifically, ongoing research at Carnegie Mellon

9

 is

looking into mapping signal strengths from wireless access points to actual

locations. Combining the two research projects can result in an extensive set of

offerings, although knowledge of an individual's location introduces privacy

issues that should be addressed by any such implementation.

9

 This research is being undertaken by Professor Alex Hills, Professor Peter Steenkiste, and

CMU's Wearable Group, among others.

	[bookmark: 61]Page 61

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

52

9. Conclusions

This thesis had set a simple goal in the beginning: to enable a user of a PDA to

place calls in a secure, authenticated way. This has been achieved by the design

and implementation of a Voice Over IP solution using the Session Initiation

Protocol, which was based on a previous MSIN thesis.

Due to the combined limitations of the PDA currently used and the available

gateway, calls from it to a PSTN phone offer sound of very low quality to the

receiving end, while the desktop version has no such problems.

Authentication capabilities are implemented using Digest Authentication, which is

supported by the SIP standard and the dynamicsoft Proxy Server operated by

the Information Networking Institute. As a result, call detail recording by the SIP

Proxy side can enable billing functionality based on the identity of each caller, as

well as more advanced access control.

This system has been tested with commercial and public-domain clients and

servers (including servers from dynamicsoft, Nortel and Lucent, and clients from

eStara and Pingtel) and has been found to be fully interoperable with them.

Moreover, it is designed in such a way that its SIP portion is as forgiving as

possible of mistakes made by its counterparts. The end user can configure

preferences including default SIP server locations and authentication criteria.

Through the system developed, this thesis contributes the first Voice Over IP

solution running on a commercial-grade Linux Personal Digital Assistant, as is

the Zaurus SL-5500. The software is released under a General Public License,

found in Appendix VI, and can be ported to any device running Linux, while a

version for the desktop is readily available.

	[bookmark: 62]Page 62

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

53

Finally, possible future work includes making the system more compact in size,

as well as implementing conferencing functionality, presence and instant

messaging, or location-based services.

	[bookmark: 63]Page 63

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

54

References

1. 3G TR 23.821, 23.228, "3GPP TSG and SA: Architecture Principles for

Release 2000"

2. Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P.,

Luotonen, A. and L. Stewart, "HTTP Authentication: Basic and Digest

Access Authentication, IETF RFC 2617, June 1999

3. Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P. and T. Berners-

Lee, "Hypertext Transfer Protocol -- HTTP/1.1", IETF RFC 2616, June

1999

4. Gulbrandsen, A., Vixie, P. and L. Esibov, "A DNS RR for specifying the

location of services (DNS SRV)", IETF RFC 2782, February 2000

5. Gupta, N., Keswani, V., Mak, H., Narjala, R. and A. Pavuluri, "Wavelink:

Handheld Wireless Multimedia Over IP", Carnegie Mellon University,

Information Networking Institute, Master's thesis, 2000

6. H. Schulzrinne, "RTP Profile for Audio and Video Conferences with

Minimal Control", IETF RFC 1890, January 1996

7. Handley, M. and V. Jacobson, "SDP: Session Description Protocol", IETF

RFC 2327, April 1998

8. Handley, M., Schulzrinne, H., Schooler, E. and J. Rosenberg, "SIP:

Session Initiation Protocol", IETF RFC 2543, March 1999

9. J. Rosenberg, "Request Header Integrity in SIP and HTTP Digest using

Predictive Nonces", IETF Draft, draft-rosenberg-sip-http-pnonce-00.txt,

June 16, 2001

10. Linux Devices, http://www.linuxdevices.com

11. Mehta, P. and S. Udani, "Voice over IP", IEEE Potentials, pp. 36-40,

October/November 2001

12. Microsoft Corp., http://www.microsoft.com

13. R. Rivest, "The MD5 Message-Digest Algorithm", IETF RFC 1321, April

1992

	[bookmark: 64]Page 64

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

55

14. R. Zopf, "RTP Payload for Comfort Noise", IETF Draft, draft-ietf-avt-rtp-cn-

06.txt, April 2002

15. Recommendation G.711, International Telecommunication Union, The

International Telegraph and Telephone Consultative Committee, Geneva,

1988

16. Rosenberg, J., Willis, D., Sparks, R., Campbell, B., Schulzrinne, H.,

Lennox, J., Huitema, C., Aboba, B., Gurle, D. and D. Oran, "Session

Initiation Protocol (SIP) Extensions for Presence", IETF Draft, draft-ietf-

simple-presence-06.txt, April 3, 2002

17. RSA Security, Inc., http://www.rsasecurity.com

18. Schulzrinne, H. and J. Rosenberg, "Signaling for Internet Telephony",

Proceedings of the 6th IEEE International Conference on Network

Protocols (ICNP), Austin, Texas, October 1998

19. Schulzrinne, H. and J. Rosenberg, "The Session Initiation Protocol:

Internet-Centric Signaling", IEEE Communications Magazine, pp. 134-141,

October 2000

20. Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson, "RTP: A

Transport Protocol for Real-Time Applications", IETF RFC 1889, January

1996

21. SIP Center, http://www.sipcenter.com

22. SIP, Columbia University, http://www.cs.columbia.edu/sip

23. Trolltech AS, http://www.trolltech.com

24. Unofficial Sharp Zaurus SL-5500 FAQ,

http://www.newbreedsoftware.com/zaurus-faq, April 2002

25. Vlaovic, B. and Z. Brezocnik, "Packet Based Telephony",

EUROCON'2001, Trends in Communications, International Conference on

Trends in Communications, pp. 210-213, Volume 1, 2001

26. Vovida Networks, Inc., http://www.vovida.org

	[bookmark: 65]Page 65

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

56

Bibliography

Camarillo, Gonzalo.

SIP demystified.

 New York: McGraw-Hill, 2002.

Dalheimer, Matthias Kalle.

Programming with Qt

. Second Edition. California:

O'Reilly and Associates, 2002.

Deitel, Harvey and Paul Deitel.

C++ How to program.

 Third Edition. New Jersey:

Prentice Hall, 2001.

Peterson, Larry and Bruce Davie.

Computer Networks: A systems approach

.

Second Edition. California: Morgan Kaufmann, 1999.

Stevens, Richard.

UNIX Network Programming, Volume 1: Networking APIs -

Sockets and XTI

. Second Edition. New Jersey: Prentice Hall, 1997.

Stroustrup, Bjarne.

The C++ Programming Language

. Third Edition.

Massachusetts: Addison-Wesley, 1997.

	[bookmark: 66]Page 66

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

57

Appendix I User's Guide

Configuration file

SipPhone is configurable through a file called

sip.cfg

; an example file is as

follows:

Registrar franc.ini.cmu.edu

Redirect franc.ini.cmu.edu

Port 5060

Username thanos

Authentication on

Registration_Duration 600

Login_Ticket_Lifetime 600

Require_Login_After_Suspend on

PDA_AddressBook_File

/home/root/Applications/addressbook.xml

SIP_AddressBook_File sipaddressbook.xml

 Although most fields are self-explanatory, here is a short description for each and

the impact it has on the application (note that login and registration mean the

same thing in this context):

??

The first two lines supply the addresses of the SIP servers. If any of these

entries is blank, the application will call directly (this implies that the SIP

URI should be the actual location of the user).

??

Following that, the SIP User Agent Server port is given.

??

The username entry supplies the default username for use when

registering; while using the SipPhone, a user can change this on

registration. It is also the default address that the application will recognize

calls for (after registration, the registered address is recognized as well).

??

Authentication is by default "on", meaning that the SIP phone will respond

to authentication requests. For security purposes, when this option is set,

a user will be prompted to log in (register) on startup and a click on

	[bookmark: 67]Page 67

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

58

"Cancel" will cause the application to exit, during that or subsequent

registrations.

??

Registration duration is simply the lifetime of the registration with the

Registrar Server (in seconds).

??

The login token lifetime denotes the amount of time the application will

wait before it requests the user to login again (in seconds). Normally, it will

be equal to the registration duration.

Functionality

 The main functionality of the INI SipPhone is very similar to that of a usual

phone: one uses the dialpad in order to place a call by pressing the

corresponding buttons. In addition to this, in the case of an incoming call,

"Incoming call" is displayed on the dialpad's screen and a pop-up dialog displays

the caller's identification and prompts the user to either accept or reject the call.

 Furthermore, the user can select among the last 5 entries dialed or the last 5

incoming callers to place calls to, and also has the option to add any of the

incoming callers to the address book. The Find dialog will search for the given

string in the address book, and on failure will allow the user to add a new contact.

	[bookmark: 68]Page 68

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

59

While adding a contact, a user can select to place a call (using either a SIP URI

or a phone number) directly after the addition.

Regarding SIP-related functionality, the Login dialog has two tabs: "Simple" and

"Advanced". The first only contains a username and password field, while the

second also prompts for the SIP domain, the Contact, and the SIP Registrar

server. All these take the default value on startup, and the password field's

contents do not show up. Moreover, one can change the proxy used by clicking

on the appropriate button.

	[bookmark: 69]Page 69

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

60

	[bookmark: 70]Page 70

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

61

Appendix II Main Classes

The following are descriptions of the fundamental functions of the main classes.

Please note that some arguments may not appear here for simplicity.

UserAgent class

This class contains the main SIP functionality. It contains data structures that

include the following:

string proxyHostName

string registrarHostName

SessionDb sessions

Its main functions are:

void UserAgent::setUpListen(listening_socket)

The main listening loop, which matches incoming messages with the

corresponding functions.

Request UserAgent::newRequest(call_id, sending_socket, method, URI)

Creates the body of a new request from its most basic fields; the rest will

be added depending on the nature of the request.

Response UserAgent::sendInvite(call_id)

This starts a new session by sending an INVITE request, and matches the

responses with the appropriate handling function, keeping state and

	[bookmark: 71]Page 71

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

62

informing the user. The return value is the final response, which may be

passed from the following function.

Response UserAgent::handleInvitexxxResp(error_handling_args)

These 6 functions (depending on which type of response arrives) handle

responses to INVITE requests; they are called by

sendInvite()

. The

return value is the final response, if any.

Response UserAgent::sendRegister(call_id, URI,

expire_registration_flag)

This generates and sends a REGISTER request, matching the responses

with the appropriate handling function, keeping state and informing the

user. If

expire_registration_flag

is raised, the request will have an

Expires

 value of 0, removing the registration from the server. The return

value is the final response, which may be passed from the following

function.

Response UserAgent::handleRegisterxxxResp(error_handling_args)

Similar to

handleInvitexxxResp()

, for REGISTER requests.

void UserAgent::cancelSession(call_id)

Sends a CANCEL message, and matches the responses with the

appropriate handling function.

Response UserAgent::handleCancelxxxResp(error_handling_args)

Similar to

handleInvitexxxResp()

, for CANCEL requests.

void UserAgent::endSession(call_id, URI)

	[bookmark: 72]Page 72

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

63

Sends a BYE message, and matches the responses with the appropriate

handling function.

Response UserAgent::handleByexxxResp(error_handling_args)

Similar to

handleInvitexxxResp()

, for BYE requests.

void UserAgent::convertRespToAck(SipMessage, URI)

Helper function used by any handler that needs to send an

acknowledgement.

void UserAgent::ensureAckGetsThrough(acknowledgement_args)

Helper function used by any function that sends an acknowledgement that

the protocol requires to reach the other party. Its parameter contains,

among others, the socket used in sending the ACK request.

void UserAgent::sendAck(error_handling_args)

Used for sending acknowledgements; it sometimes needs to be combined

with the

ensureAckGetsThrough()

 function.

void UserAgent::handleInviteRequest()

Handles an INVITE request, generating and sending the required

messages and informing the user through the GUI.

void UserAgent::handleByeRequest()

Handles a BYE request, generating and sending the required messages

and informing the user through the GUI.

void UserAgent::handleCancelRequest()

	[bookmark: 73]Page 73

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

64

Handles a CANCEL request, generating and sending the required

messages and informing the

user through the GUI.

Response UserAgent::sendErrorIfNotWellForm(sip_message)

Checks the incoming message for non-parsing errors, like invitations to

users who are not logged in, or duplicate messages. If appropriate, it

sends a response back to the sender. Called by

setUpListen()

void UserAgent::convertReqToResp(sip-message, response_number,

msg_body, URI)

Converts a request to a response-type message, since they share most of

the headers. It is called by request handlers.

AppManager class

The AppManager class takes most of the data from the Graphical User Interface,

and primarily holds constants for the supported applications.

void AppManager::newUser(new_uri)

Adds a new Contact to the local database (used for adding the default

contact, root@hostname).

void AppManager::registerUser(user_uri, contact_uri)

Prepares a new REGISTER request calls

UserAgent::sendRegister()

.

void AppManager::deRegisterUser(user_uri, contact_uri)

As above, but sets the appropriate flag for

UserAgent::sendRegister()

.

	[bookmark: 74]Page 74

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

65

CallId AppManager::newSession(to_uri, application)

Prepares a new INVITE request calls

UserAgent::sendInvite()

.

void AppManager::cancelSession(call_id)

Prepares a new CANCEL request calls

UserAgent::cancelSession(call_id)

.

void AppManager::endSession(call_id)

Prepare a new END request calls

UserAgent::endSession(call_id)

.

void AppManager::startApp(application, call_id)

Launches the appropriate application for the call.

void AppManager::closeApp(application)

Closes the specific application.

SessionDb Class

This class contains a database of Sessions and provides an API for access

functions which also deal with synchronization issues.

SessionObj* const SessionDb::newSessionObj(uri, call_id)

Creates a new Session object for a new call.

SessionObj* const SessionDb::getSessionObj(call_id)

	[bookmark: 75]Page 75

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

66

Retrieves a Session object for the particular call, gaining exclusive access

to its data.

void SessionDb::releaseSessionObj(call_id)

Releases the Session object, making it available to any thread waiting to

retrieve it.

UserObj* const SessionDb::newUser(uri, call_id)

Creates a new User object as part of the call.

UserObj* const SessionDb::getUser(uri)

Retrieves the User object associated with the particular URI.

void SessionDb::deleteUser(uri)

Removes the User object associated with the particular URI.

TpSocket class

The TpSocket class acts as a socket, either receiving or sending messages. Its

variables include:

string remote_host

int port

bool remote_host_status

bool socket_status

The last two variables mentioned are used for determining whether the remote

host is valid, and whether the socket is sending, receiving, or inactive,

respectively.

	[bookmark: 76]Page 76

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

67

void TpSocket::startSend(sip_message, number_of_retransmissions)

Starts sending the corresponding message, retrying as appropriate.

void TpSocket::sendOnce(sip_message)

For messages that only need to be sent once (like optional ACKs).

sip_message TpSocket::recv()

Listen for a new message; once it's received, parse it into the appropriate

data structure.

void TpSocket::terminateRecv()

Stop listening for messages.

MyDialPad class

This class is the main component of the Graphical User Interface. Most of its

functions are making calls to the lower layers. Its data structures are primarily the

widgets appearing on the screen, therefore it retrieves most of the necessary

data from their contents through QT-specific access functions.

void MyDialPad::clickedRegister()

Brings up the Login dialog, checks the data entered, and if no errors exist

it calls

register()

.

void MyDialPad::register()

Initiates a registration request, by calling

AppManager::registerUser()

.

	[bookmark: 77]Page 77

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

68

void MyDialPad::clickedCall()

Checks the data entered, and if no errors exist it changes the button

showing "Call" to show "Hung up", and it calls one of the two following

functions.

void MyDialPad::call(callee)

This is called if the callee corresponds to a PSTN number. It places a call

to

AppManager::newSession()

.

void MyDialPad::call(callee_ID, callee_hostname)

This is called if the callee is a SIP URI. It places a call to

AppManager::newSession()

.

void MyDialPad::clickedRedial()

Brings up the Redial dialog, and shows the corresponding calls.

void MyDialPad::clickedProxy()

Brings up the Proxy dialog.

void MyDialPad::showMessage(message)

Shows the corresponding message on the dialpad's screen. Called from

lower layers of software.

void MyDialPad::callEnded(message)

Shows the corresponding message on the screen, and changes the button

showing "Hang up" to show "Call" again.

	[bookmark: 78]Page 78

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

69

void MyDialPad::haveACall(caller, lock)

Called by

UserAgent::handleInviteRequest()

. Shows the Incoming Call

dialog, which will be displaying the caller's identity. Once the user accepts

or rejects the call, the lock (the semaphore the User Agent has requested)

will be released and control will return to the User Agent.

void MyDialPad::updateRedialList()

After having placed or received a call, it updates the redial list.

Authentication class

The Authentication class is wrapped around the MD5 algorithm and provides an

API for its functionality. Its most used functions are the following:

Authentication::Authentication(nonce, realm, URI)

Constructs the object as appropriate; called by

UserAgent::sendInvite()

or

UserAgent::sendRegister()

upon receipt of a challenge.

void Authentication::performDigest(username, password)

Calculates the response based on the data it already has and the

username and password.

string Authentication::getField()

Returns the string that will be placed within the response message.

RtpAudio class

	[bookmark: 79]Page 79

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

70

This class is responsible for managing the audio streams and the underlying RTP

stack.

int RtpAudio::openAudioDevice(device_name)

Opens the device with the appropriate permissions.

int RtpAudio::setAudioParams(parameters)

Sets the parameters for the device opened.

int RtpAudio::startSound()

Launches the two threads responsible for sending and receiving RTP

packets.

int RtpAudio::stopSound()

Terminates the two threads.

void RtpAudio::actualReadSend()

This function contains the code for the sending thread. It reads from the

device's buffer data coming through the microphone, performs the

appropriate conversions and passes the data to the RTP stack.

void RtpAudio::actualRecvPlay()

This function contains the code for the receiving thread. It gets the

incoming data from the RTP stack and plays it through the audio output.

	[bookmark: 80]Page 80

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

71

Appendix III Maintenance and how-to for future work

The nature of this system is such that it can serve as a platform for even more

functionality. In order to make these additions possible, every effort has been

made to produce a modular design that separates the system components

appropriately. On the other hand, the complexity inherent in the SIP protocol will

require widespread changes in the User Agent class in the case of SIP-specific

extensions. For this purpose, the developer is encouraged to follow the path of

each SIP request and response as is described in the documentation found both

in this document and in the software release. In particular, for additional headers

in the SIP messages, one does not need to do more than creating a subclass of

FieldVal

 and implementing the necessary code within that class (function

getField()

which returns the string part of the message, at a minimum).

For extensions that have limited interconnection with the SIP mechanisms, one

should be able to wrap them around the current functionality without having to

perform a detailed analysis of the current system beyond the module or layer to

be changed.

Regarding the changes suggested for the parsing layer earlier in this document,

the developer is encouraged to keep the current design and implement a lighter

parsing layer, possibly by using any SIP and SDP parsing modules that may be

publicly available at the time.

It is likely that the need may arise to use a windowing environment other than

QT. The underlying system is developed in a way that does not use special QT-

related functions, and can adapt to a new Graphical User Interface by simply

replacing the functions being called by the underlying layers with their

corresponding ones.

	[bookmark: 81]Page 81

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

72

Similarly, the system does not use any specific operations the Zaurus provides,

so porting it to another device can be relatively straightforward, possibly requiring

a different cross-compiler than the one used.

Supporting applications other than audio should be equally simple: audio

characteristics are currently contained in an object (

AppObj

), so a video-

conferencing application, for instance, may be supported in a similar manner.

Finally, the author can be reached at

thanoskosmidis@yahoo.com

 and would be

happy to answer any questions that will help maintain or extend the system.

	[bookmark: 82]Page 82

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

73

Appendix IV Zaurus specifications

The following are the relevant specifications for Sharp's Zaurus SL-5500, taken

from the unofficial "Frequently Asked Questions" [24].

The SL-5500 has:

- 206 MHz StrongARM SA-1100 CPU

- 64 MB SDRAM

- 16 MB ROM (flash)

- 240x320 pixels, 16 bits-per-pixel reflective 3.5" LCD display with front light

- Linux 2.4 kernel

- Personal Java

- Qtopia (Trolltech's QT/Embedded, plus the applications) [23]

- Stereo audio out, Mono audio in (1/8" headphone jack)

- On-screen handwriting recognition (with word completion)

- On-screen keyboard (with word completion)

- On-screen letter pickboard (with word completion)

- UNICode character picker

- 37-key QWERTY thumbpad/keyboard

- IR port

- USB/Serial docking station

- Compact Flash Type II expansion port

- Secure Digital / MultiMedia Card (MMC) expansion port

- Rechargeable, removable lithium-ion battery.

	[bookmark: 83]Page 83

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

74

Appendix V Related Work

Innovation and research in related fields have resulted in a lot of new products

and initiatives, some of which are outlined in this section.

??

Cisco Systems, Inc., through its AVVID (Architecture for Voice, Video, and

Integrated Data) is offering both software and hardware-based services

using SIP or H.323. Similar, primarily software-based products are offered

by Avaya, dynamicsoft, and others.

??

SpectraLink Corporation (http://www.spectralink.com) has released an

802.11b wireless phone that uses the H.323 suite of protocols. It can

provide voice communication integration to Cisco Systems' IP telephony

software.

??

Vonage Holdings Corporation (http://www.vonage.com) has Voice-over-IP

telephony services targeting broadband users, offering traditional phone

line capabilities using SIP.

??

Net2Phone, Inc. (http://www.net2phone.com), is considered the leading

VoIP provider to the end user.

??

Audiovox Communications Corporation (http://www.audiovox.com), has

released the Thera, a Pocket-PC based PDA with a built-in CDMA phone,

which will become available in the summer of 2002.

??

Research in Motion Ltd. released the Blackberry 5810 in April 2002, a

wireless handheld with optional GSM service. Samsung released the

SPH-E120 in March 2002, a CDMA2000-compliant phone with PDA

functionality based on the Palm operating system. About a year prior to

Samsung, Kyocera had released the QCP-6035, which only differs in the

version of CDMA it supports (800/1900).

??

The OpenH323 project (http://www.openh323.org) is an open-source

initiative that aims to provide an integrated solution for various desktop

platforms. Another open-source project emerged from OpenH323

	[bookmark: 84]Page 84

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

75

(http://www.pocketbone.com) that focused on videoconferencing on the

Pocket-PC platform, in particular.

As can be deduced from the above, most projects use a cellular telephony

platform and create the hardware in a way that accommodates PDA functionality

(like address books, to-do lists, appointments etc.). Additionally, it is expected

that the third generation cellular phones will be hosting applications capable of

providing similar functions.

While these offerings will be appealing to the established base of cellular

telephone users, the increasing number of 802.11 installations will make systems

like the one presented in this document more suitable. In particular, for instance,

organizations with Wireless LAN installations on their campuses will be able to

provide continuous communication between their employees through their

personal devices.

	[bookmark: 85]Page 85

Carnegie Mellon University

Information Networking Institute

Athanasios P Kosmidis

May 2002

"Telephony on a PDA: the INI SipPhone"

MSIN thesis Report

76

Appendix VI General Public License

Copyright © 2002, Athanasios P. Kosmidis. All rights reserved.

License to copy and use this software, which is derived from the Wavelink

system created by N. Gupta, V. Keswani, H. Mak, R. Narjala and A. Pavuluri, is

granted provided that it is identified as the "INI SipPhone created by Athanasios

P. Kosmidis" in all material mentioning or referencing this software or this

function.

License is also granted to make and use derivative works provided that such

works are identified as "derived from the INI SipPhone created by Athanasios P.

Kosmidis" in all material mentioning or referencing the derived work.

Athanasios P. Kosmidis makes no representations concerning either the

merchantability of this software or the suitability of this software for any particular

purpose. It is provided "as is" without express or implied warranty of any kind.

These notices must be retained in any copies of any part of this documentation

and/or software.

